51看书网

手机浏览器扫描二维码访问

第76章 对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。

以下是文章内容:

long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem

abstract

wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

1introduction

1.1definitionoftheproblem

thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsysteactuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsyste

amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherillitotanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosyste

1.2previousstudiesandaimsofthisresearch

inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murraylecar,franklinholman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussmankinoshitanakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncanlissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncanlissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncanlissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.

ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

2descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3numericalmethod

weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomkinoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahatremaine1992,1994).

thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussmanwisdom(1988,7.2d)andsahatremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.

intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.

weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).

althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.

2.4errorestimation

2.4.1relativeerrorsintotalenergyandangularmomentum

accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.

notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

2.4.2errorinplanetarylongitudes

sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshitanakai(1996)wherethedifferenceisestimatedas~60°.

3numericalresults–i.glanceattherawdata

inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.

3.1generaldescriptionofthestabilityofplanetaryorbits

first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.

verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentu(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).

豪门老男人的二婚男妻[重生]  可食用玫瑰  龙崽宝宝在求生综艺爆红了  锦衣娘子  登顶国服后猫耳露馅了  种田也异能  重生之千面影帝  我的小貓男友(BL)  万古界圣  澄晔女君(仙侠NPH)  演技帝[娱乐圈]  萌宝驾到:替婚妈咪要逃跑  豪门小闺女三岁了  偏偏宠爱(sc,1v1,高h)  金陵月  教你学个乖[穿书]  长生八万年  八零年代年少成名  为什么我还是一只童子鸡  渐渐  

热门小说推荐
佛系大小姐穿越古代悠闲生活

佛系大小姐穿越古代悠闲生活

关于佛系大小姐穿越古代悠闲生活现代大小姐自带金手指穿越架空朝代,开局赠送一个丈夫一个娃,本来以为要过上混吃等死的咸鱼生活,结果,另一个姗姗来迟,告诉她,穿越并非偶然,她是有任务的!...

超时空垃圾站

超时空垃圾站

苏璟大学毕业后,处处碰壁,心灰意冷,回老家调整心情。却发现自家后院,成了超时空垃圾站,每天都有大量垃圾汇入其中,有的来自神墓斗破苍穹盘龙等小说时空有的来自海贼王火影死神等动漫时空有的来自国队长钢铁侠等漫威时空作为垃圾站主人,苏璟有处理这些垃圾的义务。一开始他认为这是一件苦差,后来才发现,这是这辈子...

终极之最强时空

终极之最强时空

关于终极之最强时空原主角团无穿越者无系统,主cp东婷,修香,不乱拆乱凑cp,四个时空都有涉及。这是终极一班2时间线修正后的故事,终极铁三角加入了雷婷成了终极四人组,为看望刚从银时空返回的修,四人组队前往铁时空看望,接到了第一个任务,创立剩死门,维护时空秩序。而修香返回铁时空,随之而来是各种麻烦,为此阿香一手遮天,放言道我当为叶赫那拉家掌门,统领魔道,镇压一切不服!...

秦夫人

秦夫人

秦玉楼本是江南贵族秦家之嫡女,自幼贤良淑德,蕙质兰心,只因生了一张妖媚含春的脸,一副体格风骚的身段,遭人四处诟病。举手投足间无不被人说成是搔首弄姿,卖弄风情,便是一张嘴,更是令人骨软筋酥,勾魂摄魄。是以,秦玉楼无故落得个风骚轻浮杨花水性的名头。待嫁到了京城礼教严苛的侯府戚家,更为注重礼教的老夫人与榆木古板的...

李治你别怂

李治你别怂

陛下非要与本宫作对吗?武后凤眼含煞。李治畏惧地往后退了一步,吞了口口水道朕不敢不对!李卿,李卿何在?三朝功勋之后李钦载窜了出来,按住了李治不断后退的身躯,沉声道陛下,别怂!李治仿佛找到了救星,拽着李钦载的袖子低声道朕不怂,一点都不怂,李卿,朕授权你帮朕教训她!...

巫界术士

巫界术士

雷林带着智脑穿越,成为一名贵族身份的巫师学徒,通过利用自身优势,学习成为巫师,获得术士的传承,走上血脉的道路,在神秘诡异的巫师世界进行一系列探险,最后获得永恒的故事。...

每日热搜小说推荐