51看书网

手机浏览器扫描二维码访问

第76章 对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。

以下是文章内容:

long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem

abstract

wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

1introduction

1.1definitionoftheproblem

thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsysteactuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsyste

amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherillitotanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosyste

1.2previousstudiesandaimsofthisresearch

inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murraylecar,franklinholman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussmankinoshitanakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncanlissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncanlissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncanlissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.

ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

2descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3numericalmethod

weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomkinoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahatremaine1992,1994).

thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussmanwisdom(1988,7.2d)andsahatremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.

intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.

weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).

althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.

2.4errorestimation

2.4.1relativeerrorsintotalenergyandangularmomentum

accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.

notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

2.4.2errorinplanetarylongitudes

sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshitanakai(1996)wherethedifferenceisestimatedas~60°.

3numericalresults–i.glanceattherawdata

inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.

3.1generaldescriptionofthestabilityofplanetaryorbits

first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.

verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentu(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).

龙崽宝宝在求生综艺爆红了  豪门小闺女三岁了  教你学个乖[穿书]  金陵月  种田也异能  登顶国服后猫耳露馅了  演技帝[娱乐圈]  渐渐  豪门老男人的二婚男妻[重生]  长生八万年  锦衣娘子  偏偏宠爱(sc,1v1,高h)  万古界圣  重生之千面影帝  我的小貓男友(BL)  萌宝驾到:替婚妈咪要逃跑  澄晔女君(仙侠NPH)  可食用玫瑰  八零年代年少成名  为什么我还是一只童子鸡  

热门小说推荐
豪门重生之妇贵逼人

豪门重生之妇贵逼人

7年婚姻。相见如宾,浓情甜蜜。到头来,镜花水月。倾尽所有,换来一场蓄谋已久的杀人灭口。那一天。陆漫漫怀着还不足2月的孩子,死于一场车祸。离奇的车祸,却意外获得重生。陆漫漫再次睁眼,回到还未嫁人之时。她凌厉的眼眸一紧,嗜血的微笑,如罂粟般,风华绝代。重生一世,她誓要,血债血偿!为此!陆漫漫醒来后做的第一件事就是,拒绝...

海贼王之征战天下

海贼王之征战天下

意外穿越到海贼世界的江凡,机缘巧合之下截获了原本属于黑胡子的黑暗果实,从此开启了一场惊心动魄的征战之旅。当海贼王有什么意思?我要在这个世界建立自己的国家和军队,取代世界政府,征服所有海域本书又被读者戏称带着漫威在海贼...

重生后,我给霸总当老奴的那些日子

重生后,我给霸总当老奴的那些日子

关于重生后,我给霸总当老奴的那些日子池欢重生了。重生在车祸去世前的几个小时。重生后的第一件事,当然就是报复渣男渣女了。顺便把订婚仪式变成了大型求职现场。夸嚓,天空一声巨响,老奴闪亮登场。给霸总当老奴的日子也太爽了。老油条阿姨?开除!无能高管绿茶同事?撕!霸总白月光?交给她!霸总的舒适生活幸福人生,统统都由她来守护。等一下,等一下。霸总你好像误会了,做这么多只是希望你长命百岁,不是要和你在一起啊,喂!当霸总夫人?这可是另外的价格哦!...

我在修真界打辅助

我在修真界打辅助

女主修仙无CP文,我选错分类了。要等我二十万字才能申请修改分类。不好意思啦。打游戏都能被穿越!?还是到了修真界。别人带系统,带空间,带剧本。我带的什么!?英雄技能!?衰゜o゜还是两个辅助英雄。老天爷,你要不要这么玩我。不过既来之则安之,即使是辅助,我也能打上王者…说错了,我也能登上这修真界的顶峰。且看辅助如何混...

鬼知道怎么回事

鬼知道怎么回事

关于鬼知道怎么回事街溜子穿越平行世界,卧底毒贩集团,又绑定了道德系统,他该何去何从?卧底被强制因公变成了瘾君子,不服从命令,又该何去何从?一脚天堂,一脚地狱,王老五踏着七彩祥云穿越而来,他又会做什么选择呢?...

每日热搜小说推荐